首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20417篇
  免费   2718篇
  国内免费   5338篇
  2024年   40篇
  2023年   402篇
  2022年   615篇
  2021年   1172篇
  2020年   980篇
  2019年   1189篇
  2018年   1022篇
  2017年   841篇
  2016年   1005篇
  2015年   1328篇
  2014年   1685篇
  2013年   1595篇
  2012年   2059篇
  2011年   1824篇
  2010年   1246篇
  2009年   1265篇
  2008年   1405篇
  2007年   1302篇
  2006年   1076篇
  2005年   981篇
  2004年   854篇
  2003年   841篇
  2002年   752篇
  2001年   637篇
  2000年   564篇
  1999年   376篇
  1998年   236篇
  1997年   153篇
  1996年   166篇
  1995年   122篇
  1994年   98篇
  1993年   81篇
  1992年   86篇
  1991年   84篇
  1990年   71篇
  1989年   53篇
  1988年   52篇
  1987年   40篇
  1986年   26篇
  1985年   34篇
  1984年   14篇
  1983年   14篇
  1982年   21篇
  1981年   10篇
  1976年   5篇
  1964年   5篇
  1957年   8篇
  1955年   3篇
  1954年   3篇
  1950年   6篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
81.
Abstract

A novel method is described to selectively cleave RNA by harnessing the 2-5A-dependent ribonuclease.  相似文献   
82.
The market of l-phenylalanine has been stimulated by the great demand for the low-calorie sweetener aspartame. In this paper, the effects of pivotal genes on l-phenylalanine production were evaluated by metabolic engineering of wild type Escherichia coli. The bifunctional PheA protein contains two catalytic domains (chorismate mutase and prephenate dehydratase activities) as well as one R-domain (for feedback inhibition by l-phenylalanine). The catalytic domain of PheA was overexpressed to increase l-phenylalanine production. It was firstly indicated that this domain could enhance the metabolic influx to overproduce l-phenylalanine and improve the survival ability under m-Fluoro-dl-phenylalanine stress. Furthermore, the fermentation performance of aroG feedback inhibition resistant mutants was firstly compared, aroG29 and aroG15 increased the l-phenylalanine concentration by 5-fold. After that the expression of aroK and ydiB was also elevated, and the l-phenylalanine yield on cell (0.79 g/g) and maximum l-phenylalanine productivity (0.073 g/L/h) were subsequently doubled. Meanwhile, the l-phenylalanine yield on glucose increased from 0.124 g/g to 0.153 g/g. It was found that genes ydiB and aroK could elevate the l-phenylalanine yield and productivity and shorten the lag phase.  相似文献   
83.
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1G93A). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1G93A action on mitochondrial dynamics, indicating SOD1G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.  相似文献   
84.
Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have made three research based on the complete model of E. coli’s energy metabolism. We first constructed a metabolic weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were rare and that the relationship between w (weight values) and v (flux values) was not of linear correlation. At last, we have done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that (free energy rate input from the environment) can meet the demand of (free energy rate dissipated by chemical process) and that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend, we can understand more about the energy metabolism of E. coli.  相似文献   
85.
自然界中多糖类生物质资源十分丰富,然而其复杂的抗降解屏障限制了生物转化的进程.近年来,随着生物质多糖结构的快速解析以及大量多糖降解酶的鉴定研究,针对不同底物结构或产物需求,仿制高效微生物多糖代谢途径,精确定制多糖降解酶系,促进生物质高效转化已成为可能.本文分析中性多糖(纤维素和木聚糖)、碱性多糖(几丁质和壳聚糖)以及酸性多糖(褐藻胶)的精细结构组成与基团性质,总结3类多糖主要降解酶的活性架构特征及其底物精确结合模式.文章还阐述蛋白质工程设计与定制策略,针对酶分子不同功能区的分析,可为酶分子的功能快速设计与改造提供靶点,以获得适宜于工业应用的高效酶分子,此外,根据微生物胞外降解酶系的降解次序与协同关系,可基于应用需求精确定制复杂多糖降解酶系,实现生物质的高效与高值降解转化.  相似文献   
86.
Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-β-d -glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-β-d -glucoside and apigenin-7-O-β-d -glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.  相似文献   
87.
The INO80 complex, a SWI/SNF family chromatin remodeler, has regulatory effects on ESC self-renewal, somatic cell reprogramming and blastocyst development. However, the role of INO80 in regulating trophoblast cells and recurrent miscarriage (RM) remains elusive. To investigate the in vivo effects of Ino80 in embryo development, we disrupted Ino80 in C57 mice, which resulted in embryonic lethality. Silencing of Ino80 led to decreased survival capacity, migration and invasion of trophoblasts. Furthermore, RNA high-throughput sequencing (RNA-seq) revealed that Ino80 silencing closely resembled the gene expression changes in RM tissues. To investigate the mechanisms for these results, RNA-seq combined with high-throughput sequencing (ChIP-seq) was used in trophoblast cells, and it showed that Ino80 physically occupies promoter regions to affect the expression of invasion-associated genes. Last, Western blotting analyses and immunofluorescence staining revealed that the content of INO80 was reduced in RM patients compared to in healthy controls. This study indicates that INO80 has a specific regulatory effect on the viability, migration and invasion of trophoblast cells. Combined with its regulation of the expression of invasion-associated genes, it has been proposed that epigenetic regulation plays an important role in the occurrence of RM, potentially informing RM therapeutic strategies.  相似文献   
88.
The soluble form of penicillin-binding protein 3 (sPBP3) from Streptococcus pneumoniae was expressed in Escherichia coli as a six-histidine fusion protein. The protein was purified and used to develop a microplate assay in direct competitive format for the detection of penicillins and cephalosporins in milk. The assay was based on competitive inhibition of the binding of horseradish peroxidase-labeled ampicillin (HRP–Amp) to the sPBP3 by free β-lactam antibiotics in milk. Under optimized conditions, most of the β-lactam antibiotics (11 penicillins and 16 cephalosporins) could be detected at concentrations corresponding to the maximum residue limits (MRLs) set by the European Union. Analysis of spiked milk samples showed that acceptable recoveries ranged from 74.06 to 106.31% in skimmed milk and from 63.97 to 107.26% in whole milk, with coefficients of variation (CVs) less than 16%. With the high sensitivity and wide-range affinities to penicillins and cephalosporins, the developed assay based on sPBP3 exhibited the potential to be a screening assay for fast detection of β-lactam antibiotics in milk.  相似文献   
89.
Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0–20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (P<0.05) positive correlation between the densities of SOC and total nitrogen (N) in the open soils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (C t = C 1+C 0(1-e -kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.  相似文献   
90.
土壤水分时空动态特征对于干旱地区人工林的可持续经营与管理起着至关重要的作用。以位于科尔沁沙地南缘的樟子松和柠条固沙人工林为对象,于2018年11月-2019年11月连续观测了林地0-200 cm土壤剖面的含水量、温度及微气象因子,系统分析了土壤水分的时空变化特征及其对环境因子的响应。研究期内,两种林地土壤水分的季节变化可分为冻结期、补充期、消耗期和稳定期;依据土壤剖面的水分特征可分为易变层、活跃层和稳定层,但两种林地的分层深度有一定差异。在生长季内(5-10月),土壤含水量对大气降雨的响应随着土层深度的增加而减弱;降雨对樟子松人工林0-20 cm层土壤水分的影响极显著(P<0.01),对柠条人工林0-10 cm层的影响极显著(P<0.01)、20-60 cm层显著(P<0.05)。在土壤冻融周期内(2018年11月-2019年4月),两种林地的土壤均表现为"单向冻结"和"双向融化"的特点;土壤温度是影响冻融期内土壤含水量的关键因素,两者呈极显著的指数函数关系;樟子松和柠条人工林土壤的最大冻结深度分别为170 cm和190 cm,前者10 cm土层解冻时间要比后者晚11 d,可能与乔木树冠的遮阴作用有关。潜在蒸散与柠条林0-60 cm层、樟子松林0-20 cm和200 cm层的土壤水分呈极显著相关(P<0.01),而与樟子松林60 cm和160 cm层呈显著相关(P<0.05),这与树木蒸腾和土壤蒸发等综合作用有关。研究表明,由于两种人工林的树种组成、树冠大小、郁闭程度和根系分布等结构特征不同会导致林地土壤水分时空特征的异质性及其对环境因素响应的差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号